Zeta vs Zero

``````---+-----+-----
1 | 1   | 18
---+-----+-----
2 | 19  | 29
---+-----+-----
3 | {30}|{43}
---+-----+-----
``````
``````Scheme 13:9
===========
(1){1}-7:   7'
(1){8}-13:  6‘
(1)14-{19}: 6‘
------------- 6+6 -------
(2)20-24:   5'           |
(2)25-{29}: 5'           |
------------  5+5 -------
(3)30-36:   7:{70,30,10²}|
------------             |
(4)37-48:   12• ---      |
(5)49-59:   11°    |     |
--}30° 30•   |
(6)60-78:   19°    |     |
(7)79-96:   18• ---      |
--------------           |
(8)97-109:  13           |
(9)110-139:{30}=5x6 <--x-
--
{43}
``````

1155 / 5 = 286 - 55 = 200 + 31 = 231

``````layer|  i    |   f
-----+-------+------
| 1,2:1 | (2,3)
1  +-------+
| 3:2   | (7)
-----+-------+------
| 4,6:3 | (10,11,12)  <--- 231 (3x)
2  +-------+
|{7}:4  |({13})
-----+-------+------
| 8,9:5 | (14,{15})   <--- 231 (2x)
3  +-------+
| 10:6  | (19)
-----+-------+------
``````

139 = 34th prime =(2x17)th prime

We study the limit shape of the generalized Young diagram when the tensor power N and the rank n of the algebra tend to infinity with N/n fixed. We derive an explicit formula for the limit shape and prove convergence to it in probability. We prove central limit theorem for global fluctuations around the limit shape (arXiv:2010.16383v4).

``````True Prime Pairs:
(5,7), (11,13), (17,19)

|------------------------- Skema-12 ------------------------|
|------------ 6¤ -------------|------------- 6¤ ------------|
|--------------------------- 192 ---------------------------|
|---- {23} ----|---- {49} ----|-- {29} -|--{30} --|-- 61 ---|
+----+----+----+----+----+----+----+----+----+----+----+----+
|  5 |  7 | 11 |{13}| 17 | 19 | 17 |{12}| 11 | 19 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|---------  5¤  ---------|---- {48} ----|----- {48} ---|{43}|
|---------  5¤  ---------|------------ {96} -----------|{43}|
|--------- {53} ---------|-------------- {139} -------------|
|------- Skema-23 -------|------------- Skema-34 -----------|
``````

``````|------------ 36' --------------|----------------------------36' ----------------------------|
|     19'     |        17'      |      13'     |      11'     |       7'      |       5'     |
+---+----+----+---+----+----+---+---+----+-----+----+----+----+----+----+-----+----+----+----+
| 1 |  2 |  3 | 4 |  5 |  6 | 7 | 8 |  9 |  10 | 11 | 12 | 13 | 14 | 15 |  16 | 17 | 18 | 19 |
+---+----+----+---+----+----+---+---+----+-----+----+----+----+----+----+-----+----+----+----+
| 2 | 60 | 40 | 1 | 30 | 30 | 5 | 1 | 30 | 200 |  8 | 40 | 50 |  1 | 30 | 200 |  8 | 10 | 40 |
+---+----+----+---+----+----+---+---+----+-----+----+----+----+----+----+-----+----+----+----+
| ° |ΔΔΔΔ  ΦΦ | •   ΔΔ   ΔΔ   ¤ | •   ΔΔ   ΦΦΦ    Φ   ΦΦ  ¤¤¤¤|  •   ΔΔ   ΦΦΦ    Φ   ¤¤   ΦΦ |

|---- 102  ---|-----  66  ------|-------- 329 = 7 x 47 -------|- 289 = (8+9)² = 2 & (2³+9²) -|
|--2x3x(8+9)--|--- 2x3x(2+9) ---|---- (1+2) & (2x9)+(2+9) ----|------ 2 & (8x9)+(8+9) -------|
|-------- 168 = π(1000) --------|------ 1229 = π(10000) ------|------ π(89²) = 1000 ---------|
|-------- 168 = π(618xΦ) -------|----- 618 = 1000/Φ = 1000x1000/1618 = 10^6/(2x8)&(2x9) -----|
``````

919 = 1 + 6(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17) = 1 + 6(153)

286 - (231x5)/(11x7) = 286 - 1155/77 = 286 - 15 = 200 + 71 = 271

``````  -----------------------+----+----+----+----+----+----+----+----+----+-----
True Prime Pairs Δ    |  1 |  2 |  3 |  4 |  5 |  6 |  7 |  8 |  9 | Sum
=======================+====+====+====+====+====+====+====+====+====+=====
19 → π(10)            |  2 |  3 |  5 |  7 |  - |  - |  - |  - |  - | 4th  4 x Root
-----------------------+----+----+----+----+----+----+----+----+----+-----
17 → π(20)            | 11 | 13 | 17 | 19 |  - |  - |  - |  - |  - | 8th  4 x Twin
-----------------------+----+----+----+----+----+----+----+----+----+-----
13 → π(30) → 12 (Δ1)  | 23 | 29 |  - |  - |  - |  - |  - |  - |  - |10th ←------------ 10
=======================+====+====+====+====+====+====+====+====+====+===== 1st Twin
11 → π(42)            | 31 | 37 | 41 |  - |  - |  - |  - |  - |  - |13th
-----------------------+----+----+----+----+----+----+----+----+----+----- 2nd Twin
7 → π(60) → 19 (Δ12) | 43 | 47 | 53 | 59 |  - |  - |  - |  - |  - |17th
-----------------------+----+----+----+----+----+----+----+----+----+----- 3rd Twin
5 → π(72) → 18 (Δ13) | 61 | 67 | 71 |  - |  - |  - |  - |  - |  - |20th ←------------ 20
=======================+====+====+====+====+====+====+====+====+====+===== 4th Twin
3,2 → 18+13+12 → 43  | 73 | 79 | 83 | 89 | 97 | 101| 103| 107| 109|29th ------------→ 30
=======================+====+====+====+====+====+====+====+====+====+=====  ←-- bilateral 9 sums
3,2 → 18+13+12 → 43  | 73 | 79 | 83 | 89 | 97 | 101| 103| 107| 109|29th ------------→ 30
=======================+====+====+====+====+====+====+====+====+====+===== 4th Twin
5 → π(72) → 18 (Δ13) | 61 | 67 | 71 |  - |  - |  - |  - |  - |  - |20th ←------------ 20
-----------------------+----+----+----+----+----+----+----+----+----+----- 3rd Twin
7 → π(60) → 19 (Δ12) | 43 | 47 | 53 | 59 |  - |  - |  - |  - |  - |17th
``````

These objects will then behave as a complex numbers that leads to trivial and complex roots of the 18th prime identity. Since the arithmetic mean of those primes yields 157 then the existence of 114 will remain to let this 18+19=37th prime number stands as the balanced prime.

Input (12) + Query (15) + Result (19) + Ouput (22) = Total 68 Objects

``````layer | node | sub |    i     |   f
------+------+-----+----------+-----+-----+-----+                                    ---
|      |     |    1,2:1 |   1 |  30 |  40 | 71 (2,3) ‹-------------------       |
|      |  1  +----------+-----+-----+-----+                              |      |
|  1   |     |        2 |                                                |      5¨  encapsulation
|      |-----+----------+            -----------------------------       |      |
|      |     |        3 |           |                             |      |      |
1   +------+  2  +----------+----       |       LAGGING SCHEME        |      |     ---
|      |     |        4 |           |    (Exponentiation Zone)    |      |      |
|      +-----+----------+           |                             |      |      |
|  2   |     |        5 |           ------------------------------       |      7¨  abstraction
289   |      |  3  +----------+                                                |      |
|     |      |     |        6 |  ‹---------------------------- Φ               | {6®} |
------+------+-----+----------+-----+-----                                     |     ---
|      |     |     11:7 |   5 |   9 |  14 (20) --------› ¤               |      |
|      |  4  +----------+-----+-----+-----+                              |      |
|  3   |     |     12:8 |   9 |  60 |  40 | 109 (26) «------------       |     11¨  polymorphism
|      +-----+----------+-----+-----+-----+                       |      |      |
|      |     |     13:9 |   9 |  60 |  69 (27) «-- Δ19 (Rep Fork) | {2®} |      |
2   +------|  5  +----------+-----+-----+-----+                       |      |     ---
|      |     |    14:19 |   9 |  60 |  40 | 109 (28) -------------       |      |
|      |-----+----------+-----+-----+-----+                              |      |
|  4   |     | 15,18:11 |   1 |  30 |  40 | 71 (29,30,31,32) ------------      13¨  inheritance
329   |      |  6  +----------+-----+-----+-----+                                     |
|     |      |     |    19:12 |  10 |  60 | {70} (36) -------› Φ                      |
------+------+-----+----------+-----+-----+                                          ---
``````

As you can see, starting with 1, and doubling it (1+1) we got 2, again, doubling 2 (2+2) we got 4. Further doubling 32 (32+32) we got 64 and summing up 6+4 gave us 10 which again summing up the two digits gave us 1. If you keep following this pattern, It will always give us the digits 1, 2, 4, 5, 7, 8. Even summing 7+7 gives 14 which further gives 5 (1+4).

Based on Prime (7): 142857 then id: 28 from the last case will end up in id: 57 i.e. in the flowchart so that in turn they can point us to the algorithm tensor from the stop point to id: 114 on the third screen.

``````                                |                              ----------- 5 -----------
|                             |                         |
↓                             ↑                         ↓
|   mapping    |     feeding     |  lexering    |  parsering   |   syntaxing   |  grammaring  |
|------------- 36' --------------|----------------------------36' ----------------------------|
|     19'      |        17'      |      13'     |      11'     |       7'      |       5'     |
+----+----+----+---+----+----+---+---+----+-----+----+----+----+----+----+-----+----+----+----+
|  1 |  2 |  3 | 4 |  5 |  6 | 7 | 8 |  9 |  10 | 11 | 12 | 13 | 14 | 15 |  16 | 17 | 18 | 19 |
+----+----+----+---+----+----+---+---+----+-----+----+----+----+----+----+-----+----+----+----+
|  2 | 60 | 40 | 1 | 30 | 30 | 5 | 1 | 30 | 200 |  8 | 40 | 50 |  1 | 30 | 200 |  8 | 10 | 40 |
+----+----+----+---+----+----+---+---+----+-----+----+----+----+----+----+-----+----+----+----+
↓                             ↑                         |    |
|                             |                         |    |
------------ 10 -------------                          |    |
↓    ↓ |
+----+----+----+---+----+----+---+
|  2 | 60 | 40 | 1 | 30 | 30 | 5 |
+----+----+----+---+----+----+---+
|    | |
2+100 ◄-
-----------------------+----+----+----+----+----+----+----+----+----+-----           |
True Prime Pairs Δ    |  1 |  2 |  3 |  4 |  5 |  6 |  7 |  8 |  9 | Sum             |
=======================+====+====+====+====+====+====+====+====+====+=====            ↓
19 → π(10)            |  2 |  3 |  5 |  7 |  - |  - |  - |  - |  - | 4th  ◄- 4 =  π(10)
-----------------------+----+----+----+----+----+----+----+----+----+-----
``````

Consider that all creatures will go mature just like our body which is stop growing in a certain of condition. Therefore an instance will become an inside container by leaving the central as black hole and derived all of residual objects to outer level. This is what the ten (10) digits of 0719425863 in Euler's number got something to do.

(1729 + 571 - 500) / (157 - 57) = 1800 / 100 = 18th prime identity = 110 objects

The above 0719425863 is implicity state the identity of seven (7) after zero (0). By the prime hexagon, it match with the 0th-step of 18 identities and 1st-step of the seven (7) prime identities from 19th to 25th. So when it goes to four (4) prime identities from 26th and end up to the 29th it will open up a gap at the 27th which linkages with the 110 objects of the 18th.