# Quantum Gravity (feed)

Effective field theories have been a mainstay of theoretical physics since the 1930s but they haven't helped all that much with quantum gravity.

This section is referring to *wiki page-23* of *main section-1* that is *inherited * from *the spin section-127* by *prime spin-32* and *span-* with *the partitions* as below.

/feed

- Addition Zones (0-18)
- Multiplication Zones (18-30)
- Symmetrical Breaking (spin 8)
- The Angular Momentum (spin 9)
- Entrypoint of Momentum (spin 10)
- The Mapping of Spacetime (spin 11)
- Similar Order of Magnitude (spin 12)
- Searching for The Graviton (spin 13)
- Elementary Retracements (spin 14)
- Recycling of Momentum (spin 15)
- Exchange Entrypoint (spin 16)
- The Mapping Order (spin 17)
- Magnitude Order (spin 18)

- Exponentiation Zones (30-36)
- Identition Zones (36-102)
- Theory of Everything (span 12)
- Everything is Connected (span 11)
- Truncated Perturbation (span 10)
- Quadratic Polynomials (span 9)
- Fundamental Forces (span 8)
- Elementary Particles (span 7)
- Basic Transformation (span 6)
- Hidden Dimensions (span 5)
- Parallel Universes (span 4)
- Vibrating Strings (span 3)
- Series Expansion (span 2)
- Wormhole Theory (span 1)

Here we decided to take a concept that gravity enter the event horizons of black holes and tunnel out again to deposit it into the background.

## Event horizons

### 18

### 19

### 22

### 37

### 22

## Eternal Cyclic

We would expect that the quantum theory reduces to Einstein's theory of gravity. There is no way to put a black hole into the Hamiltonian.

### 20

### 21

### 38

## Gravitating Objects

A lot number of positive color-charges move from the positive charged particle toward the negative charged particles, and negative color-charges move from negative charged particle toward the positive charged particle and they combine in each other *(Gravity in Time space - pdf)*

```
Fermion | spinors | charged | neutrinos | quark | components | parameter
Field | (s) | (c) | (n) | (q=s.c.n) | Σ(c+n+q | (complex)
===========+=========+=========+===========+===========+============+===========
bispinor-1 | 2 | 3 | 3 | 18 | 24 | 19
-----------+---------+---------+-----------+-----------+------------+-- 17
bispinor-2 | 2 | 3 | 3 | 18 | 24 | i12 👈
===========+=========+=========+===========+===========+============+===========
bispinor-3 | 2 | 3 | 3 | 18 | 24 | 11
-----------+---------+---------+-----------+-----------+------------+-- 19
bispinor-4 | 2 | 3 | 3 | 18 | 24 | i18
===========+=========+=========+===========+===========+============+===========
SubTotal | 8 | 12 | 12 | 72 | 96 | 66+i30
```

Think of it this way, all gravitating bodies in the universe would be surrounded at all times by a cloud of tunneling electrons. We cannot see these particles since they’re so small and since they permeate all of space. They would also tunnel to a different location about once every Planck time (about 10^-43 seconds) whenever they interact with another particle.

- These interactions between particles amount to the exchanges of bosons between electrons and other electrons or other fermions. At each point where the electron absorbs another boson, we say that the wave function of the electron collapses, and it tunnels to a new location whereupon it interacts with yet another particle.
- The cloud of electron surrounding gravitating objects would diminish in inverse proportion to the square of the distance; hence, if you recede from an objects’ surface, you’re less likely to find an electron tunneling from that object.
- Electrons also make an excellent candidate for a particle of gravity since they absorb and emit photons readily, and we know from Einstein’s theory of general relativity that light interacts readily with gravitational fields, and that gravitational fields are thought to emit photons spontaneously.
- This spontaneous emission of photons is what we refer to as the cosmological constant or dark energy, and in our current thinking on the topic we imagine that particles of antimatter are created and annihilate with particles of matter leading, occasionally, to the emission of a photon. I suspect that this is incorrect and that no such thing as antimatter really exists. I suspect that positrons are really tunneling W particles and that this Dirac Sea, or background of tunneling electrons, is really giving rise to this phenomenon of the cosmological constant, or vacuum energy, we observe inn nature.
- As a consequence, we would need to adumbrate our standard model of particle physics by about half. This ought to be seen as a positive thing in physics. No longer do we have untestable assumptions (such as the creation and annihilation of particles) in our models, and we have a far easier means of now beginning to probe the quantum nature of gravity.

The other fascinating consequence of this way of thinking is that gravity would no longer be a fundamental force; instead it would be a secondary effect of electromagnetism. This should have been what we anticipated all along; and now, we might have a quantum theory focusing on only three forces and a theory of gravitation that is truly particle-based. *(Medium - Article)*

We may gain a better understanding of black hole physics; wewe may gain the insight that tunneling electrons enter the event horizons of black holes, absorb a particle there, and tunnel out again to deposit it into the background. In this way, we could explain how black holes radiate away. *(Medium - Article)*

```
$True Prime Pairs:
(5,7), (11,13), (17,19)
| 168 | 618 |
-----+-----+-----+-----+-----+ ---
19¨ | 3¨ | 4¨ | 6¨ | 6¨ | 4¤ -----> assigned to "id:30" 19¨
-----+-----+-----+-----+-----+ ---
17¨ | {5¨}| {3¨}| 2¨ | 7¨ | 4¤ -----> assigned to "id:31" |
+-----+-----+-----+-----+ |
{12¨}| 6¨ | 6¨ | 2¤ (M & F) ✔️ -----> assigned to "id:32" |
+-----+-----+-----+ |
11¨ | .. | .. | .. | 3¤ ----> Np(33) assigned to "id:33" -----> 👉 77¨
-----+-----+-----+-----+-----+ |
19¨ | .. | .. | .. | .. | 4¤ -----> assigned to "id:34" |
+-----+-----+-----+-----+ |
{18¨}| .. | .. | .. | 3¤ -----> assigned to "id:35" |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+ ---
43¨ | .. | .. | .. | .. | .. | .. | .. | .. | .. | 9¤ (C1 & C2) 43¨
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ ---
139¨ | 1 2 3 | 4 5 6 | 7 8 9 |
Δ Δ Δ
```

There are two groups of scientists (called collaborations) looking for evidence of gravitons in proton-proton collision experiments at the Large Hadron Collider at CERN. Once a graviton has been created, it’s expected to decay in one of a few possible ways - and it’s evidence of these decays that the collaborations are looking for. ** ATLAS search for evidence that the gravitons decays into two photons, and the CMS search for evidence that the graviton decays into two jets (bursts) of hadrons (a particular class of particle)**.

*(ThingsWeDontKnow.com)*

## Constructing the tableaux

The 10 ranks will coordinate with the 18 to raise up the symmetrical behaviour of 12+24=36 which is prime pair 17+19=36.

and let the 2 and 3 out of 2,3,5,7 to begin a new cycle while the 5,7 will pair the 11,13 and 17,19 as *True Prime Pairs*.

```
Fermion | spinors | charged | neutrinos | quark | components | parameter
Field | (s) | (c) | (n) | (q=s.c.n) | Σ(c+n+q | (complex)
===========+=========+=========+===========+===========+============+===========
bispinor-1 | 2 | 3 | 3 | 18 | 24 | 19
-----------+---------+---------+-----------+-----------+------------+-- 17
bispinor-2 | 2 | 3 | 3 | 18 | 24 | i12 👈
===========+=========+=========+===========+===========+============+===========
bispinor-3 | 2 | 3 | 3 | 18 | 24 | 11
-----------+---------+---------+-----------+-----------+------------+-- 19
bispinor-4 | 2 | 3 | 3 | 18 | 24 | i18
===========+=========+=========+===========+===========+============+===========
SubTotal | 8 | 12 | 12 | 72 | 96 | 66+i30
===========+=========+=========+===========+===========+============+===========
majorana-1 | 2x2 | - | 18 | - | 18 | 18
-----------+---------+---------+-----------+-----------+------------+-----------
majorana-2 | 2x2 | - | 12 | - | 12 | 12 👈
-----------+---------+---------+-----------+-----------+------------+-----------
majorana-3 | 2x2 | - | 13 | - | 13 | i13
===========+=========+=========+===========+===========+============+===========
SubTotal | 12 | - | 43 | - | 43 | 30+i13
===========+=========+=========+===========+===========+============+===========
Total | 20 | 12 | 55 | 72 | 139 | 96+i43 👈
```

# Prime Identity

We are going to assign prime identity as a ** standard model** that attempts to stimulate a quantum field model called

**for**

*eQuantum**the four (4) known fundamental forces*.

This section is referring to *wiki page-23* of *main section-1* that is *inherited * from *the spin section-127* by *prime spin-32* and *span-* with *the partitions* as below.

/feed

- Addition Zones (0-18)
- Multiplication Zones (18-30)
- Symmetrical Breaking (spin 8)
- The Angular Momentum (spin 9)
- Entrypoint of Momentum (spin 10)
- The Mapping of Spacetime (spin 11)
- Similar Order of Magnitude (spin 12)
- Searching for The Graviton (spin 13)
- Elementary Retracements (spin 14)
- Recycling of Momentum (spin 15)
- Exchange Entrypoint (spin 16)
- The Mapping Order (spin 17)
- Magnitude Order (spin 18)

- Exponentiation Zones (30-36)
- Identition Zones (36-102)
- Theory of Everything (span 12)
- Everything is Connected (span 11)
- Truncated Perturbation (span 10)
- Quadratic Polynomials (span 9)
- Fundamental Forces (span 8)
- Elementary Particles (span 7)
- Basic Transformation (span 6)
- Hidden Dimensions (span 5)
- Parallel Universes (span 4)
- Vibrating Strings (span 3)
- Series Expansion (span 2)
- Wormhole Theory (span 1)

This presentation was inspired by theoretical works from *Hideki Yukawa* who in 1935 had predicted the existence of *mesons as the carrier particles* of strong nuclear force.

## Addition Zones

Here we would like to explain the way of said prime identity on getting the arithmetic expression of an ** individual unit identity** such as a taxicab number below.

It is a taxicab number, and is variously known as Ramanujan’s number and the Ramanujan-Hardy number, after an anecdote of the British mathematician *GH Hardy* when he visited Indian mathematician *Srinivasa Ramanujan* in hospital *(Wikipedia)*.

These three (3) number are twin primes. We called the pairs as *True Prime Pairs*. Our scenario is mapping the distribution out of these pairs by taking the symmetrical behaviour of 36 as the smallest power (greater than 1) which is not a prime power.

The smallest square number expressible as the sum of **four (4) consecutive primes** in two ways (5 + 7 + 11 + 13 and 17 + 19) which are also **two (2) couples** of prime twins! *(Prime Curios!)*.

```
$True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+---------
| 1 | 5
1 +-----+
| 2 | 7
-----+-----+--- } 36 » 6®
| 3 | 11
2 +-----+
| 4 | 13
-----+-----+---------
| 5 | 17
3 +-----+ } 36 » 6®
| 6 | 19
-----+-----+---------
```

Thus in short this is all about the method that we called as the ** 19 vs 18 Scenario** of mapping the quantum way within a huge of primes objects (5 to 19) by lexering (11) the ungrammared feed (7) and parsering (13) across syntax (17).

*Φ(1,2,3) = Φ(6,12,18) = Φ(13,37,61)*

```
$True Prime Pairs:
(5,7), (11,13), (17,19)
layer | node | sub | i | f
------+------+-----+----------
| | | 1 |
| | 1 +-----+
| 1 | | 2 | (5)
| |-----+-----+
| | | 3 |
1 +------+ 2 +-----+----
| | | 4 |
| +-----+-----+
| 2 | | 5 | (7)
| | 3 +-----+
| | | 6 |
------+------+-----+-----+------ } (36)
| | | 7 |
| | 4 +-----+
| 3 | | 8 | (11)
| +-----+-----+
| | | 9 |
2 +------| 5 +-----+-----
| | | 10 |
| |-----+-----+
| 4 | | 11 | (13)
| | 6 +-----+
| | | 12 |
------+------+-----+-----+------------------
| | | 13 |
| | 7 +-----+
| 5 | | 14 | (17)
| |-----+-----+
| | | 15 |
3 +------+ 8 +-----+----- } (36)
| | | 16 |
| |-----+-----+
| 6 | | 17 | (19)
| | 9 +-----+
| | | 18 |
------|------|-----+-----+------
```

The main background is that, as you may aware, the prime number theorem describes the ** asymptotic distribution** of prime numbers which is still a major problem in mathematic.

## Multiplication Zones

Instead of a proved formula we came to a unique expression called ** zeta function**. This expression first appeared in a paper in 1737 entitled

*Variae observationes circa series infinitas*.

This expression states that the sum of the zeta function is equal to the product of the reciprocal of one minus the reciprocal of primes to the powers. But what has this got to do with the primes? The answer is in the following product taken over the primes p (discovered by *Leonhard Euler*):

This issue is actually come from ** Riemann hypothesis**, a conjecture about the distribution of complex zeros of the Riemann zeta function that is considered to be

**of**

*the most important**unsolved problems*in pure mathematics.

In addition to the trivial roots, there also exist ** complex roots** for real t. We find that the he first ten (10) non-trivial roots of the Riemann zeta function is occured when the values of t below 50. A plot of the values of ζ(1/2 + it) for t ranging from –50 to +50 is shown below. The roots occur each time

**.**

*the locus passes through the origin**(mathpages)*.

Meanwhile obtaining the non complex numbers it is easier to look at a graph like the one below which shows Li(x) (blue), R(x) (black), π(x) (red) and x/ln x (green); and then proclaim "R(x) is the best estimate of π(x)." Indeed it is for that range, but as we mentioned above, Li(x)-π(x) changes sign infinitely often, and near where it does, Li(x) would be the best value.

And we can see in the same way that the function Li(x)-(1/2)Li(x1/2) is ‘on the average' a better approximation than Li(x) to π(x); but no importance can be attached to the latter terms in Riemann's formula even by repeated averaging.

## Exponentiation Zones

The problem is that the contributions from the non-trivial zeros at times swamps that of any but the main terms in these expansions.

A. E. Ingham says it this way: Considerable importance was attached formerly to a function suggested by Riemann as an approximation to π(x)… This function represents π(x) with astonishing accuracy for all values of x for which π(x) has been calculated, but we now see that its superiority over Li(x) ** is illusory**… and for special values of x (as large as we please) the one approximation will deviate as widely as the other from the true value

*(primes.utm.edu)*.

Moreover in it was verified numerically, in a rigorous way using interval arithmetic, that *The Riemann hypothesis is true up to 3 · 10^12*. That is, all zeroes β+iγ of the Riemann zeta-function with 0<γ≤3⋅1012 have β=1/2.

We have Λ ≤ 0.2. The next entry is conditional on taking H a little higher than 10*13, which of course, is not achieved by Theorem 1. This would enable one to prove Λ < 0.19. Given that our value of H falls between the entries in this table, it is possible that some extra decimals could be wrought out of the calculation. We have not pursued this *(arXiv:2004.09765)*.

This Euler formula represents the distribution of a group of numbers that are positioned at regular intervals on a straight line to each other. Riemann later extended the definition of zeta(s) to all complex numbers (** except the simple pole at s=1 with residue one**). Euler's product still holds if the real part of s is greater than one. Riemann derived the functional equation of zeta function.

The Riemann zeta function has the trivial zeros at -2, -4, -6, … (the poles of gamma(s/2)). Using the Euler product (with the functional equation) it is easy to show that all the other zeros are in the critical strip of non-real complex numbers with 0 < Re(s) < 1, and that they are symmetric about the critical line Re(s)=1/2. The unproved Riemann hypothesis is that all of the nontrivial zeros are actually on the critical line *(primes.utm.edu)*.

If both of the above statements are true then mathematically this Riemann Hypothesis is proven to be incorrect because it only applies to certain cases or limitations. So first of all the basis of the Riemann Hypothesis has to be considered.

The solution is not only to prove Re(z)= 1/2 but also to calculate ways for the imaginary part of the complex root of ζ(z)=0 and also to solve the functional equations. *(Riemann Zeta - pdf)*

On the other hand, the possibility of obtaining the function of the distribution of prime numbers shall go backwards since it needs significant studies to be traced.

Or may be ** start again from the Euleur Function**.

## Identition Zones

*Freeman Dyson* discovered an intriguing connection between quantum physics and Montgomery's pair correlation conjecture about the zeros of the zeta function which dealts with the distribution of primes.

The Mathematical Elementary Cell 30 (** MEC30**) standard

*unites*the mathematical and physical results of 1972 by

*the mathematician Hugh Montgomery and the physicist Freeman Dyson*and thus reproduces energy distribution in systems as a path plan

**.**

*more accurately than a measurement**(Google Patent DE102011101032A9)*

The path plan assume that a symmetric distribution of prime numbers with equal axial lengths from a ** middle zero axis = 15** is able to determine the distribution of primes in a given number space. This assumption finally bring us to the equation of

**.**

*Euler's identity*Euler’s identity is considered to be an exemplar of deep mathematical beauty as it shows a profound connection between the most fundamental numbers. Three (3) of the basic arithmetic operations occur exactly once each: ** addition**,

**, and**

*multiplication*

*exponentiation**(Wikipedia)*.

The finiteness position of Euler's identity by the said *MEC30* opens up the possibility of accurately representing the self-similarity based on the distribution of *True Prime Pairs* so that all number would belongs together with their own identitities.

The electroweak force is believed to have separated into the electromagnetic and weak forces during the quark epoch of the early universe.

The value of the vacuum energy (or more precisely, the renormalization scale used to calculate this energy) may also be treated as an additional free parameter.

As we’ve already suggested, the number 30 figures large in our modulo 30 domain. The Prime Spiral Sieve is Archimedean in that the separation distance between turns equals 30, ad infinitum. The first two rotations increment as follows:

And when you combine the terminating digit symmetries capturing three (3) rotations around the sieve generation in their actual sequences, you produce the ultimate combinatorial symmetry.

Nothing is going to be easly about the nature of prime numbers but they demonstrably congruent to something organized. Let's discuss starting with the *addition zones*.

**eQuantum Project**

Copyright © 2023-2024

Reference: